COVNET: a cooperative coevolutionary model for evolving artificial neural networks

نویسندگان

  • Nicolás García-Pedrajas
  • César Hervás-Martínez
  • José Muñoz-Pérez
چکیده

This paper presents COVNET, a new cooperative coevolutionary model for evolving artificial neural networks. This model is based on the idea of coevolving subnetworks that must cooperate to form a solution for a specific problem, instead of evolving complete networks. The combination of this subnetworks is part of a coevolutionary process. The best combinations of subnetworks must be evolved together with the coevolution of the subnetworks. Several subpopulations of subnetworks coevolve cooperatively and genetically isolated. The individual of every subpopulation are combined to form whole networks. This is a different approach from most current models of evolutionary neural networks which try to develop whole networks. COVNET places as few restrictions as possible over the network structure, allowing the model to reach a wide variety of architectures during the evolution and to be easily extensible to other kind of neural networks. The performance of the model in solving three real problems of classification is compared with a modular network, the adaptive mixture of experts and with the results presented in the bibliography. COVNET has shown better generalization and produced smaller networks than the adaptive mixture of experts and has also achieved results, at least, comparable with the results in the bibliography.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Cooperative Coevolutionary Approach to Function Optimization

A general model for the coevolution of cooperating species is presented. This model is instantiated and tested in the domain of function optimization, and compared with a traditional GA-based function optimizer. The results are encouraging in two respects. They suggest ways in which the performance of GA and other EA-based optimizers can be improved, and they suggest a new approach to evolving ...

متن کامل

Evolving Neural Networks with Collaborative Species

We present a coevolutionary architecture for solving decomposable problems and apply it to the evolution of artificial neural networks. Although this work is preliminary in nature it has a number of advantages over non-coevolutionary approaches. The coevolutionary approach utilizes a divide-and-conquer technique in which species representing simpler subtasks are evolved in separate instances of...

متن کامل

Evolving an Integrated Phototaxis and Hole-avoidance Behavior for a Swarm-bot

This article is on the subject of evolving neural network controllers for cooperative, mobile robots. We evolve controllers for combined hole-avoidance and phototaxis in a group of physically connected, autonomous robots called s-bots, each with limited sensing capabilities. We take a systematic approach to finding a suitable fitness function, an appropriate neural network structure, and we exp...

متن کامل

AN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING

Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE transactions on neural networks

دوره 14 3  شماره 

صفحات  -

تاریخ انتشار 2003